Минимальная логика - définition. Qu'est-ce que Минимальная логика
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Минимальная логика - définition


Минимальная логика         

логическая система, являющаяся ослаблением интуиционистской логики (См. Интуиционистская логика) и конструктивной логики (См. Конструктивная логика) за счёт исключения из числа постулатов формулы ⌉А ⊃ (А ⊃ В) (интерпретируемой как "из противоречия следует всё что угодно"). Несмотря на недоказуемость этого логического принципа и тем более формулы ⌉ ⌉ А ⊃ А ("закона снятия двойного отрицания"), в минимальном исчислении высказываний (А. Н. Колмогоров, 1925, норвежский логик И. Иоганссон, 1936) можно доказать от противного отрицательные предложения, опираясь на "закон приведения к абсурду": (А ⊃ В) ⊃ ((A ⊃ ⌉ В) ⊃ ⌉ А). Эту систему можно обычным образом расширить до минимального исчисления предикатов, играющего важную роль в работах по основаниям математики: его логические средства (хотя это явно и не оговаривается) используются, например, в доказательствах непротиворечивости (См. Непротиворечивость) классической арифметики, предложенных немецкими логиками Г. Генценом (1936, 1938) и К. Шютте (1951) и П. С. Новиковым (1943) (см. Метаматематика). Это исчисление используется также как логическая база метатеории (См. Метатеория) в работах по ультраинтуиционистскому обоснованию математики (см. Аксиоматическая теория множеств, Аксиоматический метод). Ослабление (сужение) М. л. посредством исключения из числа аксиом "закона приведения к абсурду" приводит к положительной логике (См. Положительная логика).

Лит.: Колмогоров А. Н., О принципе tertium non datur, "Математический сборник", 1925, т. 32, в. 4, с. 646-67; Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, с. 94, 490-91; Johansson J., Der Minimalkalkül, ein reduzierter Formalismus, "Compositio mathematica", 1937, v, 4, fasc. 1; Wajsberg M., Untersuchungen über den Aussagenkalkül von A. Heyting, "Wiadomosci Mathematyczne", 1939, t. 46.

Ю. А. Гастев.

Минимальная логика         
Минимальная логика — это специальная логическая система, в которой при операциях с высказываниями не применяется ни закон исключённого третьего, ни то следствие, вытекающее из закона противоречия, по которому из противоречия следует всё что угодно.
Троичная логика         
ОДИН ИЗ ВИДОВ МНОГОЗНАЧНОЙ ЛОГИКИ
Трехзначная логика; Трёхзначная логика; Логика Клини
Трои́чная ло́гика (трёхзначная логика или тернарная логика) — один из видов многозначной логики, предложенный Яном Лукасевичем в 1920 году. Трёхзначная логика — исторически первая многозначная логика, является простейшим расширением двузначной логики.

Wikipédia

Минимальная логика

Минимальная логика — это специальная логическая система, в которой при операциях с высказываниями не применяется ни закон исключённого третьего, ни то следствие, вытекающее из закона противоречия, по которому из противоречия следует всё что угодно.

С точки зрения всеобщей применимости минимальная логика является результатом пересмотра, принципов классической логики.

Qu'est-ce que Миним<font color="red">а</font>льная л<font color="red">о</font>гика - définition